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Fig. 1: Our method upgrades 360° images to free-viewpoint renderings with six degrees-of-freedom. We train a 3D Gaussian point
cloud to represent the input 360° image and iteratively insert novel content in previously unseen regions to fill disoccluded content. This
produces more comfortable and immersive VR viewing experiences.

Abstract— 360° images are a popular medium for bringing photography into virtual reality. While users can look in any direction by
rotating their heads, 360° images ultimately look flat. That is because they lack depth information and thus cannot create motion parallax
when translating the head. To achieve a fully immersive VR experience from a single 360° image, we introduce a novel method to
upgrade 360° images to free-viewpoint renderings with 6 degrees of freedom. Alternative approaches reconstruct textured 3D geometry,
which is fast to render but suffers from visible reconstruction artifacts, or use neural radiance fields that produce high-quality novel
views but too slowly for VR applications. Our 360° 3D photos build on 3D Gaussian splatting as the underlying scene representation to
simultaneously achieve high visual quality and real-time rendering speed. To fill plausible content in previously unseen regions, we
introduce a novel combination of latent diffusion inpainting and monocular depth estimation with Poisson-based blending. Our results
demonstrate state-of-the-art visual and depth quality at rendering rates of 105 FPS per megapixel on a commodity GPU.

Index Terms—Novel-view synthesis, inpainting, real time

1 INTRODUCTION

360° images can capture a complete scene in a single snapshot. How-
ever, they look flat in virtual reality (VR), where they are usually
rendered as a simple textured sphere or cube map that lacks important
depth cues such as binocular disparity or motion parallax [55]. We
present a novel method to make 360° images fully immersive by giving
them depth using monocular depth estimation, and filling in previously
unseen regions that become visible as a user looks around the scene and
behind objects. Our resulting 360° 3D photos can be freely explored in
six degrees-of-freedom (6DoF), including arbitrary 3D head translation
and rotation.

Most approaches for capturing scenes as 360° VR experiences in a
single shot require multi-view capture of the scene using a camera rig
[34] with as many as 16 [1, 49], 46 [6] or even 60 cameras [73], which
is not practical for casual users. Alternative approaches reconstruct
a scene representation from a 360° input video of a moving camera
under the assumption that the scene is static [5, 7–9, 20, 21, 25, 30, 35],
which is not always robust. Our approach enables the creation of 360°
3D photos from a single 360° input image, which is the most practical
option for casual users. This makes our approach beneficial to a variety
of VR applications, such as virtual tourism, real estate, or education.

Existing single-image 3D photo techniques [32, 33, 59] turn a single
(perspective) input image into a compelling 3D photo by addressing
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three key challenges: 1) 3D reconstruction from a monocular image
to explain the 3D structure of the underlying scene, 2) 3D scene com-
pletion to fill in plausible content in unseen and missing parts, and 3)
real-time rendering for free-viewpoint 6-DoF novel-view synthesis. In
our work, we address these three challenges for a single 360° input
image, so they can be experienced in VR.

No current approach solves all three challenges jointly for 360°
images. Xu et al. [69] use the estimated layout of an indoor scene for
reconstructing 3D scene structure, which limits the level of scene detail
and the type of scenes that are supported. PanoSynthVR [66] extends
multi-plane images to multi-cylinder images, which enables real-time
rendering, but severely limits inpainting performance. Most recently,
Wang et al. [67] optimize a panoramic neural radiance field (PERF)
from a 360° image by iteratively inpainting and refining novel 360°
RGBD views. However, the geometry filling strategy conflicts with the
used 3D representation as they are decoupled. Rendering novel views
is also slow due to the underlying NeRF backbone (Instant-NGP).

Our approach leverages 3D Gaussian splatting [28] to efficiently
solve all three challenges. We start by estimating a depth map for the
360° input image [53], and projecting the resulting 360° RGBD image
into 20 perspective RGBD images corresponding to the faces of an
icosahedron, shown to be one of the least distorted approximations
of the sphere [12]. We then train an initial scene reconstruction using
depth-supervised 3D Gaussian splatting from these 20 views. We then
iteratively sample novel virtual viewpoints, to inpaint any remaining
holes using a pre-trained latent diffusion model and a monocular depth
estimator, and fine-tune the scene model using the initial and inpainted
novel views. We use the rendered 3D Gaussian splats to allow for soft
inpainting, where the continuous opacity determines how soft or strong
content needs to be filled in 3D regions. Our main contributions are:

1. A novel approach for upgrading single 360° images to immersive
3D photos that can be experienced in virtual reality.
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2. A scene representation based on 3D Gaussian splatting that dy-
namically refines occluded areas as new views become available.

3. A new soft inpainting technique for RGBD images that combines
latent diffusion with monocular depth estimation, and harmo-
niously blends the results during scene reconstruction.

2 RELATED WORK

Most techniques for synthesising novel views for VR applications
expect multi-view image or video input [55], which is hardly practical
for casual users. There are also single-image novel-view synthesis
methods, but most only support perspective images, which severely
limits the available field of view in VR compared to 360° images.

2.1 Novel-View Synthesis for Virtual Reality
Conceptually the simplest form of view synthesis is directly interpolat-
ing between the nearest subset of views, e.g. using a basic proxy geom-
etry [4], optical flow fields [41], or view-dependent geometry [18, 48].
This view interpolation works best if there are many available view-
points, ideally tens to hundreds. On the other hand, novel-view synthesis
using a single 360° camera generally assumes a static scene captured
by a moving camera [5, 7, 21], such that subsequent frames capture
different viewpoints of the same scene. In contrast, our approach only
needs a single 360° image as input.

A wide variety of intermediate representations have been applied
for VR novel-view synthesis. One of the earliest is omnidirectional
stereo [1, 31, 43, 50, 54], the standard format for streaming 360° stereo
videos. However, the format is lacking depth for rendering motion
parallax; it only supports looking sideways. While textured meshes
[25,34,49,58] enable view synthesis with full 6-DoF parallax, they tend
to lack visual fidelity due to flat surfaces and hard triangle edges. Softer
view synthesis is enabled by multiplane images [14, 44, 74], which are
stacked parallel image planes with transparency. This limits multiplane
images to forward-facing scenes. 360° views can be achieved with
multicylinder images [66], optionally with per-layer depth maps [39], or
multisphere images [2,6,46]. However, the key limitation of multi-layer
images is the rather small region of motion before the view synthesis
quality degrades.

Recently, neural radiance fields (NeRFs) [45] have reinvigorated
the field of novel-view synthesis due to their high-quality results and
conceptual simplicity. Mip-NeRF 360 [3] showed the first results on
360° scenes, although the camera is always inward-facing. VR-NeRF
[70] demonstrated the first end-to-end NeRF system for real-time VR
rendering. SMERF [11] also achieves real-time rendering of NeRFs
using a clever baking scheme. Most similar to our approach is PERF
[67], which synthesizes novel 360° RGBD views that help train a
NeRF starting from a single panorama. 3D Gaussian splatting [28]
delivers faster training and rendering times than most NeRFs techniques.
This is especially attractive for VR applications, such as dynamics-
aware interactions [27] or text-driven scene generation [10, 36, 42].
Our approach also benefits from the rendering speed of 3D Gaussian
splatting, as well as its advantageous optimization properties.

2.2 Single-Image View Synthesis
The key idea of lifting a single input image into the 3D realm has been
approached in many different ways. SynSin [68] projects the input
image to a feature point cloud that can be rendered from any view, and
postprocessed to create a color image using a CNN. Worldsheet [19]
shrink-wraps the scene with a mesh that is textured to enable novel-view
synthesis from arbitrary viewpoints. The meshes can also be cut into
multiple layers [33, 59], which enables higher quality occlusions but
requires inpainting of previously unseen regions. Alternatively, multi-
plane images can provide smooth view synthesis for a limited region of
viewpoints [24,29,65]. Using a learned image encoder, pixelNeRF [72]
can create novel views from a single input image in a feed-forward
fashion. However, these approaches are limited to perspective images
and do not work correctly for 360° images due to the different image
projection model.

Recent diffusion-based approaches try to jointly solve the 3D recon-
struction and scene completion problems by fine-tuning a pretrained

latent diffusion model [16, 56] to synthesize increasingly high-quality
novel views of objects [17, 22, 40, 62–64, 75] or scenes [15, 26, 47, 61]
from a single perspective input image. Methods that work at a scene
level generally follow the three stages of incremental synthesis, align-
ment and refinement. Invisible Stitch [13], Text2Room [23] and Lu-
cidDreamer [10] use pretrained latent diffusion models and monocular
depth estimation for outpainting RGBD scene content as a textured
mesh, a point cloud and 3D Gaussian splats, respectively. These meth-
ods extend a single perspective image into panoramic scenes, which
differs from our goal of converting an existing 360° image into a 360°
3D photo.

3 METHOD

The core of our method is an iterative Gaussian point cloud completion
approach that is outlined in Fig. 1. We start from a single 360° image
and estimate its depth. Next, we project the input into 20 perspective
RGBD images and initialize a preliminary set of 3D Gaussian splats
[28] to represent the underlying scene that explains the input (Sec. 3.2).
Moving away from the centre of projection reveals empty areas that
need filling. We sample virtual novel views inside an action radius
and inpaint both color and depth in the empty regions (Sec. 3.3). We
add this inpainted content to the preliminary point cloud as new 3D
Gaussians and optimize them to match the inpainted and original input
images.

3.1 Initial Setting

The input of our method is a single 360° image I360. First, we estimate
its depth map D360 using an off-the-shelf 360° monocular depth esti-
mator. Specifically, we use 360MonoDepth [53] for its state-of-the-art
performance in indoor and outdoor scenes.

We project the resulting 360° RGBD image onto an icosahedron
as perspective RGBD images with poses {Ei}20

i=1, where Ei = [Ri |0] |
Ri ∈ R3×3,0 ∈ R3 and shared intrinsics K ∈ R3×3, resulting in a set of
initial color images {Ii}20

i=1 ∈ RH×W×3 and depths {Di}20
i=1 ∈ RH×W .

360MonoDepth outputs depth maps using Euclidean distance or ray
length. For rasterization, 3D Gaussian splatting expects depth as the
z-component of the ray, where flat regions perpendicular to the view
direction share the same depth. However, Euclidean distance increases
with distance from the principal point, making it incompatible with
3D Gaussian splatting. Therefore, we convert the depth maps Di from
Euclidean distance to z-depth using

dz =
r

∥p−u∥2 . (1)

Here, r is the Euclidean distance of a pixel, and ∥p−u∥2 represent the
distance of a pixel u to the principal point p.

3.2 3D Gaussian Splatting Preliminaries

3D Gaussian splatting [28] represents the underlying space from a set of
calibrated images as 3D Gaussians parameterized by their centre x∈R3,
spherical harmonics (SH) coefficients c ∈ RD, an opacity value α ∈ R,
a rotation vector represented as a quaternion q ∈H, and a scaling vector
s ∈ R3. Upon projecting the 3D Gaussians into 2D splats, the color C
of a pixel is computed via volumetric rendering, using front-to-back
depth ordering:

C = ∑
j∈N

c jα jTj, (2)

where N is the set of ordered Gaussian indices, and Tj = ∏
j−1
k=1(1−αk)

is the transmittance, defined as the accumulated transparency for Gaus-
sians overlapping the same pixel. Similarly, we render the accumulated
depth using

D = ∑
j∈N

d jα jTj, (3)

where d j = (Rx j)z is the depth of each splat from the camera.
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Fig. 2: Overview of our iterative Gaussian point cloud completion. Rasterizing a novel view from the preliminary point cloud results in renderings with
holes. We insert unoptimized Gaussians in empty regions and iteratively refine them to match the inpainted image.

To supervise training, we use the default loss from 3D Gaussian
splatting consisting of an L1 loss and D-SSIM for the RGB renders.
We also supervise the rendered depths using an additional L1 loss:

L = λRGBL1(Ii,C)+(1−λRGB)LD-SSIM(Ii,C)+λDL1(Di,D), (4)

using weights λRGB = 0.8 and λD = 1.3. The depth loss serves as a 3D
prior to encourage geometric consistency and avoid trivial solutions
like a flat sphere.

3.3 Iterative Scene Completion
The preliminary Gaussian point cloud represents a partial observation
of the underlying 3D scene. Rendering the scene from a new view-
point that is different from the original reveals empty areas with no
content (see Fig. 2). Thus, we aim to fill the entire empty space seen
by any view inside an action sphere of radius a. At each iteration, we
randomly sample views placed on the sphere surface with intrinsics K
and extrinsics E = [R |C]:

C =
x ·a
∥x∥2 , (5)

where x ∼ N (0,I). We construct the random rotations R by sampling
longitude θ and latitude φ angles from uniform distributions:

θ ∼ U (−π,π) and φ ∼ U
(
−π

2
,

π

2

)
. (6)

Next, we rasterize the 3D Gaussians to obtain the rendered image I and
depth map D, and a soft mask m that depicts pixels’ transmittance. We
binarize the transmittance mask using a threshold of 0.05, unless stated
otherwise.

The rendered image I has empty regions or holes (Fig. 2) that need
inpainting. We leverage a text-to-image inpainting latent diffusion
model Ft2i to inpaint unobserved pixels:

Iinp = Ft2i(I,m, t), (7)

where t is a text prompt.
The rendered depth map D is also incomplete. Unfortunately, state-

of-the-art dense depth inpainting models fall short at preserving high-
frequency and sharp details. Therefore, we feed the inpainted image Iinp
to a powerful perspective monocular depth estimator [71] to estimate
its depth map D̃.

The output depth map D̃ matches the scene up to an unknown scale
factor and offset. We find the scale s and offset o that best align D̃ with

D via least squares [52]. Specifically, we use only the opaque values
from m, namely ¬m, where information exists in D.

s,o = argmin
s,o

∑
p∈¬m

(sD̃p +o−Dp)
2, (8)

Dinp = sD̃+o. (9)

3.3.1 Seamless RGBD Blending
Both the inpainted image Iinp and the aligned depth map Dinp result in
a prediction with novel content across the entire pixel grid. However,
content outside of holes is already known and has been optimized to
match the initial 360 image (Sec. 3.2), so we want to preserve it as
much as possible. To do this, we seamlessly blend the rendered images
I and depth maps D with their respective inpainted versions Iinp, Dinp
by solving a Poisson equation with Dirichlet boundary conditions [51].
This results in Ib and Db. Figure 3 shows the smooth transitions between
existing and inpainted content.

Critically, we assume that depth in empty regions must be further
than its surrounding foreground depth. However, Poisson blending does
not guarantee this. We therefore perform near-depth clipping on the
blended depth Db that forces depth values in empty regions to be behind
the smallest enclosing ring of foreground depth δΩ:

Db =

{
Db, if m = 0
max(Db,Db|δΩ

) if m = 1.
(10)

Here, ‘Db|δΩ
’ represents the depth values of Db at the points on the

enclosing ring δΩ.

3.3.2 Gaussian Insertion
As discussed, the image Ib and depth Db have been optimized to faith-
fully match old content in known regions while synthesizing plausible
color and geometry inside holes. However, our 3D scene representation
is not yet aware of this content. We convert novel content to 3D Gaus-
sians and add them to the point cloud. The new Gaussian 3D means are
computed like:

x = E−1K−1 p̃d . (11)

Where p̃d is the augmented homogeneus coordinate of a 2D pixel with
its corresponding depth p̃d = (x,y,Db(x,y)). The Gaussian color c is
fetched from Ib. We initialize Gaussian rotations q as unit quaternions.
Scale s is initialized as the distance to its closest neighbours. Finally,
we add the new virtual image to the training set consisting of the 20
original training cameras and a growing set of novel virtual views.
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Fig. 3: Using latent inpainting models result in reconstructions that are not identical to the incomplete rendering outside holes. Naive alpha blending
reuses outside content but leaves holes and non smooth transitions. Poisson blending smoothly interpolates between old and new content without
leaving holes nor visible seams.

4 EXPERIMENTS AND RESULTS

4.1 Experiment Settings

Implementation. The size of the input 360 image I360 is
2048×1024. We estimate the depth D360 at native resolution and ini-
tialize a Gaussian point cloud with one Gaussian per pixel. The size
of the perspective images I and D is 512×512. We optimize the pre-
liminary 3D Gaussian splatting for 7,000 iterations. We optimize only
for level-1 SH harmonics due to the lack of multi-view input. Work on
novel-view synthesis [58] argues that head movement in VR interactive
exploration is usually limited to 35 cm or less. We use an action sphere
of radius a = 0.5 (equivalent to 50 cm for scenes with metric depth).
To avoid trespassing scene boundaries, we truncate the action sphere
if the camera center in Eq. (5) is too close to scene boundaries. We
run the Gaussian point cloud completion for 100 iterations. At each
iteration, we render a pool of V = 100 candidate virtual views and sort
them reversely by their transmittance. We choose the top-1 ranked view.
This way we always encourage filling the bigger gaps. Each virtual
view is optimized for 1000 iterations. During the iterative process, ini-
tial views {Ei}20

i=1 start with a higher chance of being selected. We
monotonously increase the sampling weight of virtual poses until equal
weight is achieved. We observed that resetting opacity was harmful in
the overall method, as newly added Gaussians were incorrectly culled
when virtual views had lower chance of being selected. We instead
chose a less-severed opacity control mechanism [57] where opacity is
periodically decreased by 0.001. For the latent diffusion inpaint model
we found that using the prompt empty with a strength of 0.9 works best.
Training a scene usually takes around 50 minutes in a single RTX 3090
with 24GB of memory.

Datasets. We conduct experiments on two datasets. The Replica
dataset [60] consists of 12 synthetic indoor scenes. We render a con-
sistent camera trajectory path with 255 poses traversing the room. We
report qualitative and quantitative results. We also evaluate the pro-
posed method and baselines on in-the-wild data from the OmniPhotos
dataset. It contains 30 scenes of real outdoors footage. Each scene has
only one single 360° color image and no ground-truth depth map.

Evaluation Metrics. We use the three standard image quality met-
rics to evaluate our results: PNSR, SSIM and LPIPS. We evaluate
depth quality using standard metrics for monocular depth estimation.
Absolute Relative Difference (Abs Rel), Root Mean Squared Error
(RMSE) and delta inliers δ < 1.25. We report VR related metrics like
FPS per megapixel (FPS/MP). VR aims to render 4 megapixels per

eye at interactive speed. Additionally, we report VMAF1 [37] as a
perceptual video quality assessment metric, which demonstrates the
strongest correlations with human perceptual assessments [38].

Baselines. We compare our results to Text2Room [23] and PERF
[67]. The former generates textured 3D meshes from a text prompt. We
modified to initialize the textured mesh from a 360 RGBD input. PERF
is a single panorama neural radiance field method. For fair comparison,
all methods are provided with the same 360 RGBD input and evaluated
with identical camera trajectory.

4.2 Quantitative Evaluation
Tab. 1 shows the quantitative results in Replica. Our method achieves
the best performance in image quality metrics, depth quality metrics
and FPS/MP. The metrics validate some advantages of our method
with respect to the baselines. We aim to reuse known content from the
preliminary 3D Gaussian splatting to the greatest extent. This makes
supervision to not conflict. The Gaussians that contribute to non-empty
regions always see the same content regardless of the viewing posi-
tion. Text2Room and PERF also aim to reuse the input when possible.
However, their inpainting masks are estimated with ad-hoc strategies
that fall short with complex scenes. We just use the disocclusion of
Gaussians which were optimized to fit an initial image. Fig. 4 compares
VMAF video quality metrics for all Replica scenes. Our method scores
the highest average VMAF in 10 out of 12 scenes while consistently
achieving the lowest standard deviation over time. This highlights that
our method not only produces high-quality renderings, but also has the
best temporal performance compared to PeRF and Text2Room.

4.3 Qualitative Evaluation
Fig. 5 shows qualitative results for all the methods on all datasets.
Our method reconstructs existing content with the highest consistency.
Overall our results show fewer errors in thin structures. On Replica, our
results have sharper object contours. Text2Room incorrectly removes
objects with thin structures while PeRF deforms the contours of the
foreground. Our approach also shows less blurry transitions between
inpainted depth and rendered depth. Text2Room struggles in regions
with large holes. On the other side, PeRF depth renderings do not align
accurately. Results on in-the-wild examples from OmniPhotos (with
additional examples in Fig. 6), show that our approach clearly outper-
forms at inpainting content at sides of foreground outline compared
with the baselines. Sec. 4.3 shows the best, median and worst frames
on the test trajectory in terms of PSNR for three scenes of Replica.

1Video Multimethod Assessment Fusion



Table 1: Quantitative results for Replica360-2K, evaluated at 512×512 resolution. Highlighting: best , second-best .

Visual quality Depth quality Speed

Method PSNR ▲ SSIM ▲ LPIPS ▼ AbsRel ▼ RMSE ▼ δ <1.25 ▲ δ <1.252 ▲ δ <1.253 ▲ FPS/MP ▲

Text2Room [23] 28.018 0.887 0.066 0.008 0.034 0.990 0.995 0.997 0.78
PeRF [67] 29.181 0.913 0.058 0.208 0.321 0.633 0.996 0.998 0.2
Ours 31.192 0.925 0.050 0.004 0.007 0.997 0.999 0.999 105
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Fig. 4: Video perceptual quality for the 12 scenes of Replica [60]. Each bar shows the average VMAF across 255 test frames. The overlaid error bar
indicates the standard deviation. Our method shows the best VMAF in 10 out of 12 scenes, and is a close second in the remaining 2 scenes.

The worst PSNR belongs to viewpoints that reveal large disocclusions.
Figure 1, Figure 2 and Figure 3 in the supplemental material show
the distribution of image quality metrics for the three corresponding
Replica scenes using our method and baselines.

4.4 Ablation Studies
We perform several ablation studies to justify the design choices of our
training strategy for the iterative Gaussian point cloud completion. The
ablations are summarised in Tab. 2 and Fig. 7.

Single virtual view. We reduce the pool of virtual views from 100
to 1 when sampling novel views. With our approach, we ensure empty
space is always filled first.

w/o training views. The initial 20 views are discarded after train-
ing the preliminary scene model. We show that using them during
the scene completion stage helps anchor the scene and avoids drifting
during the 3D Gaussian splatting optimization.

Opacity reset. The original Gaussian splatting implementation
periodically resets opacity. We show that this harms training as the
optimization adds fuzzy Gaussians in empty space to explain certain
views.

No blending. We use the inpainted RGBD reconstruction of
Eq. (9) directly as supervision for virtual views. We notice that the
noisy nature of the latent space compression makes convergence diffi-
cult. Eq. (9) does not guarantee that depth values in holes are behind
the surrounding ones, resulting in ghosting artifacts due to conflicting
supervision between initial and virtual views.

4.5 Limitations
Our method does not come without limitations (see Fig. 9). The gener-
ative nature of diffusion models can result in inpainting erratic content.

This translates in wrong depth estimates which corrupts 3D Gaussian
splatting. Gaussians placed at foreground contours might bleed into
the background causing outline artifacts. Our method show artifacts
when rendered from viewpoints close to scene boundaries. This is an
inherent problem of 3D Gaussian splatting which some works address.
The lack of real-world annotated datasets makes quantitative evaluation
only possible in synthetic data. Although reporting VMAF in synthetic
data somewhat demonstrates human preference, subjective studies with
human participants would be beneficial for a more thorough real-world
evaluation.

5 DISCUSSION

We show results in a bounded sphere where the user is expected to
move. However, in a real VR setting, user motion is unconstrained and
can lead to much larger movements. Inpainting larger holes first may
result in a lack of context for the diffusion model, potentially causing
large semantic gaps between existing and inpainted content. Also, our
method relies on accurate depth maps for supervision. Incorrect depths
can cause disocclusions to manifest in regions where they should not,
resulting in erratic inpainted content.

6 CONCLUSION

Our proposed method is the first to achieve high-quality renderings
of indoor and outdoor scenes at high frame rates. Using 3D Gaussian
splatting as our scene representation with the novel combination of
latent diffusion inpainting and Poisson-based blending, we demonstrate
the highest quantitative performance at rates of 105 FPS per megapixel.
Our method is an important step towards enabling free-viewpoint ren-
dering of casually captured 360° images. As future work, investigating
inpainting empty space in a more principled way, without drifting,
could lead to inpainted content that is not overly hallucinated.
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Fig. 5: Qualitative comparison to different methods on different datasets. Our results show the highest level of detail of all predictions.



Table 2: Ablations evaluated on Replica360-2K. Highlighting: best , second-best .

Method PSNR ▲ SSIM ▲ LPIPS ▼ AbsRel ▼ RMSE ▼ δ <1.25 ▲ δ <1.252 ▲ δ <1.253 ▲

Ours (Single virtual view) 30.988 0.925 0.051 0.005 0.007 0.996 0.998 0.999
Ours (w/o training views) 28.017 0.890 0.093 0.008 0.017 0.992 0.996 0.998
Ours (Opacity Reset) 27.621 0.892 0.095 0.010 0.015 0.993 0.997 0.999
Ours (No blending) 29.939 0.908 0.075 0.022 0.025 0.985 0.995 0.998
Ours (Full) 31.192 0.925 0.050 0.004 0.007 0.997 0.999 0.999

Ours PeRF [67] Text2Room [23]

Fig. 6: Qualitative comparison on OmniPhotos outdoor scenes [5].
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